35 research outputs found

    Energy conserving schemes for the simulation of musical instrument contact dynamics

    Get PDF
    Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument

    Points2Sound: From mono to binaural audio using 3D point cloud scenes

    Full text link
    For immersive applications, the generation of binaural sound that matches the visual counterpart is crucial to bring meaningful experiences to people in a virtual environment. Recent works have shown the possibility to use neural networks for synthesizing binaural audio from mono audio using 2D visual information as guidance. Extending this approach by guiding the audio using 3D visual information and operating in the waveform domain may allow for a more accurate auralization of a virtual audio scene. In this paper, we present Points2Sound, a multi-modal deep learning model which generates a binaural version from mono audio using 3D point cloud scenes. Specifically, Points2Sound consists of a vision network with 3D sparse convolutions which extracts visual features from the point cloud scene to condition an audio network, which operates in the waveform domain, to synthesize the binaural version. Experimental results indicate that 3D visual information can successfully guide multi-modal deep learning models for the task of binaural synthesis. In addition, we investigate different loss functions and 3D point cloud attributes, showing that directly predicting the full binaural signal and using rgb-depth features increases the performance of our proposed model.Comment: Code, data, and listening examples: https://github.com/francesclluis/points2soun

    The influence of the vocal tract on the attack transients in clarinet playing

    Get PDF
    When playing single-reed woodwind instruments, players can modulate the spectral content of the airflow in their vocal tract, upstream of the vibrating reed. In an empirical study with professional clarinettists (Np=11), blowing pressure and mouthpiece pressure were measured during the performance of Clarinet Concerto excerpts. By comparing mouth pressure and mouthpiece pressure signals in the time domain, a method to detect instances of vocal tract adjustments was established. Results showed that players tuned their vocal tract in both clarion and altissimo registers. Furthermore, the analysis revealed that vocal tract adjustments support shorter attack transients and help to avoid lower bore resonances

    Perceptual Significance of Tone-Dependent Directivity Patterns of Musical Instruments

    Get PDF
    Musical instruments are complex sound sources that exhibit directivity patterns that not only vary depending on the frequency, but can also change as a function of the played tone. It is yet unclear whether the directivity variation as a function of the played tone leads to a perceptible difference compared to an auralization that uses an averaged directivity pattern. This paper examines the directivity of 38 musical instruments from a publicly available database and then selects three representative instruments among those with similar radiation characteristics (oboe, violin, and trumpet). To evaluate the listeners\u27 ability to perceive a difference between auralizations of virtual environments using tone-dependent and averaged directivities, a listening test was conducted using the directivity patterns of the three selected instruments in both anechoic and reverberant conditions. The results show that, in anechoic conditions, listeners can reliably detect differences between the tone-dependent and averaged directivities for the oboe but not for the violin or the trumpet. Nevertheless, in reverberant conditions, listeners can distinguish tone-dependent directivity from averaged directivity for all instruments under study

    Direction Specific Ambisonics Source Separation with End-To-End Deep Learning

    Full text link
    Ambisonics is a scene-based spatial audio format that has several useful features compared to object-based formats, such as efficient whole scene rotation and versatility. However, it does not provide direct access to the individual source signals, so that these have to be separated from the mixture when required. Typically, this is done with linear spherical harmonics (SH) beamforming. In this paper, we explore deep-learning-based source separation on static Ambisonics mixtures. In contrast to most source separation approaches, which separate a fixed number of sources of specific sound types, we focus on separating arbitrary sound from specific directions. Specifically, we propose three operating modes that combine a source separation neural network with SH beamforming: refinement, implicit, and mixed mode. We show that a neural network can implicitly associate conditioning directions with the spatial information contained in the Ambisonics scene to extract specific sources. We evaluate the performance of the three proposed approaches and compare them to SH beamforming on musical mixtures generated with the musdb18 dataset, as well as with mixtures generated with the FUSS dataset for universal source separation, under both anechoic and room conditions. Results show that the proposed approaches offer improved separation performance and spatial selectivity compared to conventional SH beamforming.Comment: To be published in Acta Acustica. Code and listening examples: https://github.com/francesclluis/direction-ambisonics-source-separatio

    Axial vibrations of brass wind instrument bells and their acoustical influence: Experiments

    Get PDF
    It has recently been proposed that the effects of structural vibrations on the radiated sound ofbrass wind instruments may be attributable to axial modes of vibration with mode shapes that contain no radial nodes [Kausel, Chatziioannou, Moore, Gorman, and Rokni, J. Acoust. Soc. Am.137, 3149–3162 (2015)]. Results of experiments are reported that support this theory. Mechanical measurements of a trumpet bell demonstrate that these axial modes do exist inbrass wind instruments. The quality factor of the mechanical resonances can be on the order of 10 or less, making them broad enough to encompass the frequency range of previously reported effects attributed to bell vibrations. Measurements of the input impedance show that damping bell vibrations can result in impedance changes of up to 5%, in agreement with theory.Measurements of the acoustic transfer function demonstrate that the axial vibrations couple to the internal sound field as proposed, resulting in changes in the transfer function of approximately 1 dB. In agreement with theory, a change in the sign of the effect is observed at the frequency of the structural resonance
    corecore